3 research outputs found

    Studying the Dynamical Properties of 20 Nearby Galaxy Clusters

    Full text link
    Using SDSS-DR7, we construct a sample of 42382 galaxies with redshifts in the region of 20 galaxy clusters. Using two successive iterative methods, the adaptive kernel method and the spherical infall model, we obtained 3396 galaxies as members belonging to the studied sample. The 2D projected map for the distribution of the clusters members is introduced using the 2D adaptive kernel method to get the clusters centers. The cumulative surface number density profile for each cluster is fitted well with the generalized King model. The core radii of the clusters' sample are found to vary from 0.18 Mpc \mbox{h}^{-1} (A1459) to 0.47 Mpc \mbox{h}^{-1} (A2670) with mean value of 0.295 Mpc \mbox{h}^{-1}. The infall velocity profile is determined using two different models, Yahil approximation and Praton model. Yahil approximation is matched with the distribution of galaxies only in the outskirts (infall regions) of many clusters of the sample, while it is not matched with the distribution within the inner core of the clusters. Both Yahil approximation and Praton model are matched together in the infall region for about 9 clusters in the sample but they are completely unmatched for the clusters characterized by high central density. For these cluster, Yahil approximation is not matched with the distribution of galaxies, while Praton model can describe well the infall pattern of such clusters.Comment: 16 pages, 8 figure

    Yield Optimization and Supercritical CO2 Extraction of Essential Oil from Jasmine Flower

    Get PDF
    Supercritical fluid extraction (SFE) is an innovation that permits extraction of an extensive variety of different chemical composition from the plant grids. Extraction of essential oil from Jasmine flower was tentatively carried out using the supercritical CO2 technique. The effect of extraction parameters which include pressure (100–300 bar) and temperature (300–350 K) on the oil recovery was explored. The extraction process was optimized using the response surface methodology (RSM). At the SFE optimal conditions, the chemical compositions of the extracted oil were examined using gas chromatography-mass spectrometry (GC-MS) analysis. The obtained result reflected that the optimal yield of oil from Jasmine flower was 12.18% mg oil extracted/100 g dry flower, which was achieved through an SFE optimal conditions of pressure at 200 bar and extraction temperature at 325 K. A total number of six chemical compounds were tentatively identified in the Jasmine flower extracted oil at the optimal SFE conditions
    corecore